
World Applied Sciences Journal 17 (Special Issue of Applied Math): 87-93, 2012
ISSN 1818-4952
© IDOSI Publications, 2012

Corresponding Author: Siti Nazifah Zainol Abidin, Department of Mathematics, Faculty of Computer and Mathematical 
Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

87

A Review on Geometric Brownian Motion in
Forecasting the Share Prices in Bursa Malaysia

Siti Nazifah Zainol Abidin and Maheran Mohd Jaffar

Department of Mathematics, Faculty of Computer and Mathematical Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

Abstract: The application of Geometric Brownian motion to forecast share prices is reviewed. Formula of 
Geometric Brownian motion is analyzed and examined to meet the fluctuation of share prices. Uncertainty
and unpredictability share prices makes it difficult for investors to forecast future prices . Thus, this 
reviewed paper aims to state the importance of application of Geometric Brownian Motion into share prices 
and helps the investors to forecast future prices for the short-term investment. This paper will elaborate 
geometric Brownian motion involving the randomness, volatility and drift that can help investors in making 
their investment decision wisely.
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INTRODUCTION

Stock market is a platform for investors to own 
some shares of a company. Investors will become a part 
of the company members and share in both profits 
and losses of that company. This is the opportunity 
for the investors to generate extra income apart from
their daily jobs.

Changes of share prices on daily basis make them
more volatile and difficult to predict. When purchasing 
a stock, it does not guarantee anything in return. Thus, 
it makes stocks risky in investment, but investors can
gain high return. Wrong decision in choosing the
counters may end up in capital loss.

Therefore, this paper is available as a basic guide
for investors to predict future share prices using
geometric Brownian motion. This model can predict
share prices in a short period of time [1] by taking into 
account the important elements of the share prices .
Investment in short period of time is the time awaited
by every investor to earn profit immediately. This
model is very efficient for investors who want
immediate share prices outlook.

There are many mathematical models introduced
by researchers in predicting share prices. Among the
models are Hidden Markov Model (HMM), high-order
fuzzy time-series model, moving average
autoregressive exogenous (ARX) with combination of 
Grey System (GS) theory and Rough Set (RS), Markov-
Fourier Grey Model (MFGM), Clustering-Genetic
Fuzzy System (CGFS) which were introduced by [2-6]

respectively. Unfortunately, these models are not
suitable for short-term investments as desired by most 
of the investors. It is suitable for long-term investment 
and forecasting the next day’s closing price.

For example [5] used the combination of the grey 
model, Fourier series and Markov and come out with 
the new method called as MFGM. The researchers
stated that the MFGM is a powerful model and can 
predict accuracy but it is only suitable for long-term
operation.

The other examples are  CGFS model. The CGFS is 
outperformed since it gives a lowest Mean Absolute
Percentage Error (MAPE) value by comparing with 
HMM, Hybrid of HMM, Artificial Neural Network 
(ANN) and Genetic Algorithms (GA), Hybrid of HMM 
and Fuzzy logic, ARIMA and ANN. This CGFS 
model gives the same result as HMM model used by
[2]. It can only be applied to predict the next day’s 
closing price [6].

Meanwhile, the method such as ANN is
problematic because it requires the use of fuzzy systems 
and architectures in predicting share prices [2]. In
addition, it also requires some background knowledge 
of experts.

Thus, a mathematical model as simple as
Geometric Brownian Motion (GBM) is  required to 
assist investors in forecasting share prices for a
short period of investment time. Our result shows
that GBM is highly accurate model proven by the 
MAPE value and it can be used to predict the future 
share prices for the next two weeks of investment in
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Bursa Malaysia. Therefore it gives some room for
investors to evaluate the decision to be taken now
and gain profit in a maximum of two weeks of
investments undertaken.

This paper is organized as follows. In section II, we 
will briefly describe about derivation of GBM
involving the formula, properties and its application in 
forecasting share prices. Section III will be the
elaboration, imple mentation and result of applying
GBM in share prices. Section IV will be the conclusion.

DERIVATIVE OF GEOMETRIC 
BROWNIAN MOTION

The mathematical model used is GBM. GBM
grows in the stochastic calculus. Stochastic calculus is a
branch of the mathematic  that deals with uncertainty 
such as in stock market and foreign exchange.

According to [7], investor main concern will be the
return on investment which is referred to the percentage 
growth in the value of an asset. The quantity Si is the 
asset value on the ith day and the return from day ito
day i+1 is given by

i 1 i
i

i

S S
R

S
+ −

=

Rate of return can be explained as the rate of profit 
or loss in investment. For instance, if yesterday the
price in counter A is RM0.50 and today it was RM0.55 
then the rate of return was 0.1. Meaning that, if
investors invest in counter A, the rate of return will be 
10% increase in capital investment.

The positive value of rate of return indicates
increase of profit, while a negative value, means that 
the investor will face the loss. Higher rate of return 
value gives higher profit gaining. By knowing the rate
of return, the mean of returns distribution of drift, µ can
be calculated as follows, where M is the number of 
returns in the sample.

M
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And the sample standard deviation (or volatility,σ) is
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Volatility refers to the fluctuation of the share
prices, which the price of a security moves up and 
down [8]. Volatility is found by calculating the
annualized standard deviation of daily change in price 

where standard deviation is a statistical measure of 
dispersion around a central tendency.

High volatility refers to share prices rapidly moves 
up and down over the short periods of time. In simple
words, it refers to the risk level, since the fluctuation of 
the prices is unpredictable and uncertain. Investing in 
stock market is risky. Investor will face either loss or 
profit after investment. Therefore, volatility of the rate 
of return (or standard deviation) can be used as the 
measurement of risk level [9]. Higher volatility refers to 
the higher level of risk.

According to [7], he believes that the returns can 
be written as random variables, drawn from a normal
distribution with a known, constant, non-zero mean and 
a known, constant and non-zero deviation since the
return is closed enough to normal distribution. The
usage of normal distribution because the return value 
changes in one unit of time by an amount that is 
normally distributed with mean and standard deviation.
The normal distribution is a good choice because the 
return variable is being affected additively by many 
independent random variables. Reference [7]
standardizes the normal distribution of asset return by 
entering the standard normal variable, φ into the asset 
return model as bellow: 

i 1 i
i

i
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= = + ×φ (1)

Time step for one day denotes as ∂t. Mean of the 
scales follows the size of the time step. By assuming µ 
to be constant, it can be writ ten as

mean t=µ∂

And let the standard deviation of the asset return 
over time steps, ∂t will be as below by letting σ to be
some parameter in measuring the amount of
randomness.

1
2r t=σ∂

The mean and the standard deviation over the time 
steps by assuming µ and σ are constant will be as 
follows:
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Equation (2) can be simplified as

1
2

i 1 i i iS S S t S t+ − = µ∂ + σφ∂ (3)
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Left hand side shows the changes of the asset price,
while in the right hand side shows the random walk 
model in discrete time step.

According to [7], stock markets are varying
continually over very small intervals of time which 
follows the Brownian motion (BM). BM refers to the 
limiting process for a random walk as the time steps go 
to zero [7]. This change on the asset pricing is being 
altered by random amounts. BM is the fundamental 
tools to describe the mathematical model on all the
financial asset pricing. This was strongly supported by
[10], who stated that the behavior of the stock market’s 
price are unpredictable and follow the random walk in 
GBM . It is out performing compares with the other 
model.

A GBM model is a continuous-time stochastic
process explained by [1], in which the logarithm of the
randomly varying quantity follows a BM also known as 
Wiener process.

Wiener process or a BM process can be
defined as the stochastic process {X(t), t≥0} is called a 
Wiener process (or a Wiener Einstein process or a BM
process) [11].

By using Wiener process notation, asset price
model in continuous-time limit, can be written as in (4), 
where dS refers to the change in the asset price.
The limit will be ∂t→0. The first term in ∂t on the 
right-hand side of (3) will be changed to dt, but it is 
wrong to change the second term since it can’t be 
written as  dt1/2 instead of ∂t1/2. Thus, dX will be a 
random variable, from normal distributions with mean 
zero and variance dt

2E[dX] 0                 E[dX ] dt= =

dS Sdt SdX= µ + σ (4)

Learning of the asset return model has bought us to 
the BM theory, where BM refers to the limiting process 
for a random walk as the time steps go to zero indicates 
as X(t). The properties of BM are  very important for 
financial model and it is explained by [7], are as below:

• Finiteness: Either random walk is going to infinity 
in a finite time or a limit in which there is no 
motion at all, is the result for any increment of 
scaling over time step. It denotes in term of square 
root of time step (∂t1/2) as in equation (3).

• Continuity: X(t) is the continuous-time limit of 
discrete time random walk. 

• Markov property: the conditional distribution of
X(t) given information up until τ<t depends only 
on X(t) It only depends on the previous value.

• Martingale property: the conditional expectation of
X(T) given information up until τ<t is  X(τ). It is
only the amount that is already hold. 

• Quadratic variation: the time between 0 to t in the 
partition is divided with n+1 partition points where

i
tt i( ).n= Here

n
2
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• Normality: the increment of X(t) over finite 
time of ti-1 to ti, X(ti)-X(ti-1) is Normally distributed 
with mean zero and variance ti-ti-1.

The BM’s properties will be used in GBM.

Back to the stochastic differential mo del as in (4), 
we will discuss the stochastic integration. Let assume 
that a(t) and b(t) are some functions, then

S(t) a(t) b(t)= +

The ordinary differential equation will be as

dS a(t)dt b(t)dX= +

The equation above is  as in (4). The integration of 
it will be

t t

00 0
S(t) a( )d b( )dX( ) S= τ τ+ τ τ +∫ ∫

Before discussing the Ito’s lemma, the most
important rule of the stochastic calculus, the mean 
square limit, that is defined first as 

n
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Which follow the quadratic variation as  ti = i(t/n). And
as n→∞ this tends to zero, therefore

n
2
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From the definition of mean square limit, this  is 
often written as

t
2

0

(dX) t=∫

The mean square limit is useful in definition of 
the stochastic integration. Now, Ito’s lemma will be
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introduced. In learning of Ito’s lemma, the knowledge 
of Taylor series expansion is needed to derive the
Ito’s lemma.

Let a function of F(X(t)), with the sma llest
timescales as ∂t = nh. Thus, the function of F(X(t+h))
can be approximated by a Taylor series as below

2
2

2

dF
F(X(t h)) F(X(t)) (X(t h) X(t) (X(t))

dX
1 d F

(X(t h) X(t)) (X(t))
2 dX

+ − = + −

+ + − +

Now, substitute the smallest timescales and it forms

2
2

2
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By applying the Taylor series in (5) it will be as below
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Approximation used is

2 2

2 2

d F d F
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By Substitute ∂t = nh into the first line of
F(X(t nh) F(X(t))+ − and will get F(X(t t)) F(X(t))+ ∂ − ,
thus

F(X(t nh) F(X(t)) F(X(t nh) F(X(t))+ − = + − (7)

The second line is 
t t

t

dF
dX
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The last definition is 

t t 2
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Substitute into (8) and (9) into (7) we get
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If we extend the equation (10) to the longest
timescales, from zero to t, thus, the integral of Ito’s 
lemma, F(X), will be 

t t 2

2
0 0

dF 1 d F
F(X) F(X(0)) (X( ))dX( ) (X( ))d

dX 2 dX
= + τ τ + τ τ∫ ∫ (11)

The differential version of the Ito’s lemma in (11) 
is written as 

2

2

dF 1 d F
dF dX dt

dX 2dX
= + (12)

Suppose, the stochastic differential equation as in 
equation (4) and the function of F(S) = log S, will 
describe the asset price as the lognormal random walk. 
By using Ito’s lemma as follows:
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Cancel all the insignificant term by using the rule 
of thumb as below

dX dX dt
dt dt dX dt dt dX 0

⋅ =
⋅ = ⋅ = ⋅ =

And (13) will be as below

2
2 2

2

dF dF 1 d F
dF Sdt SdX S dt

dS dS 2 dS
= µ + σ + σ

It can be simplified as
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(14), then it will form
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Integrate both sides 
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Here  ec = S(0), µ is drift, σ is volatility, X(t) is
random value and S(t) is the price of stock at time, t.
The stochastic differential equation for log S is

21
( ) t (X( t) X(0))

2S(t) S(0)e
µ+ σ +σ −

= (15)

This stochastic differential equation is particularly
important in modeling of many asset classes. Equation
(15) is the asset price model that is able to predict an 
asset price at specific time t.

According to [12], there are three measurement of 
forecasting model which involve time period, t. The 
measurements are number of period forecast, n, actual 
value in time period at time, t, Yt and forecast value at 
time period t, Ft. The widely used to evaluate the
forecasting method that considers the effect of the
magnitude of the actual values, is the mean absolute 
percentage error (MAPE). It can be calculated as
follows:

t t

t

Y F
Y

MAPE
n

−

=
∑

Table 1 shows a scale of judgment of forecast 
accuracy using MAPE equation.

ELABORATION ON GEOMETRIC 
BROWNIAN MOTION

GBM model is also known as exponential of BM
or model of stock prices. It also refers to a process often 

Table 1: A scale of judgment of forecast accuracy
MAPE Judgment of forecast accuracy

<10% Highly accurate
11% to 20% Good accurate
21% to 50% Reasonable forecast
>51% Inaccurate forecast
Source [12]

Table 2: A sample of forecast prices vs. actual prices for hingyap 
counter

Date Actual (RM) Forecast (RM)

31-Mar-10 1.18 1.18
1-Apr-10 1.20 1.14
2-Apr-10 1.14 1.18
5-Apr-10 1.19 1.19
6-Apr-10 1.19 1.16
7-Apr-10 1.18 1.16
8-Apr-10 1.17 1.20
9-Apr-10 1.18 1.17
12-Apr-10 1.19 1.20
13-Apr-10 1.18 1.17
14-Apr-10 1.18 1.18
15-Apr-10 1.17 1.18
16-Apr-10 1.18 1.15
19-Apr-10 1.15 1.18
20-Apr-10 1.15 1.22
21-Apr-10 1.16 1.18
22-Apr-10 1.16 1.21
23-Apr-10 1.16 1.17
26-Apr-10 1.16 1.20
27-Apr-10 1.16 1.19
28-Apr-10 1.15 1.19
29-Apr-10 1.13 1.19
30-Apr-10 1.12 1.18

used to model the price of a security as it evolves over 
time [13]. This model is widely used model of stock 
price behavior. With the combination of volatility,
randomness and expected rate of return make the model 
equivalent with the stock price behavior.

According to [13], when used to model the price of 
a security over time, the GBM process possesses
neither the flaws of the BM process. Because it is the
logarithm of the share prices that is assumed to be
normal random variable, the model does not allow for 
negative share prices. Furthermore, because the values 
are in ratios, rather than differences of prices separated 
by a fixed amount of time that have the same
distribution, the GBM makes what many feel is the 
more reasonable assumption. It is the percentage, rather 
than the absolute, change in price whose probabilities 
do not depend on the current prices.
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Fig. 1: A sample of forecast prices vs. actual prices

The expected returns of GBM are independent of 
the value of the process which agrees with what we
would expect in reality. This model shows the same 
kind of movement in its paths as we see in real stock 
prices as shown in the Fig. 1 and Table 1 as a sample.

Figure 1 and Table 2 are obtained by analyzing the 
small size companies under the range of RM10 to 
RM50 million market capitalizations. For this case, 
there are 77 counters that are normally distributed asset 
return and listed in Main Board of Bursa Malaysia that 
are analyzed.

Figure 1 shows that 4 graphs of forecasting price 
using GBM compared with the actual price in Bursa 
Malaysia for 1 month data. Meanwhile Table 2 shows a 
sample of forecasting value for HINGYAP counter. Its
1 month forecasting data is compared with the actual 
prices.

Let say, investors invested on 31st March 2010 and 
gain profit on 14th April 2010. Table 2 illustrates the
prices on 1st April 2010 until 14th April 2010. The
forecast prices are closed to the actual prices. And after 
14th April 2010, the forecast prices become more
volatile and far from the actual prices. Thus, this is the 
good opportunity for the investors to decide on 31st

March 2010 and gain profits on 14th April 2010, which 
is a two week working day of investment. Figure 1
gives a clear view of it. 

To give more confident to the researchers , let us
measure the accuracy of the forecast model by looking 
at the MAPE value. Table 3 shows the forecast price 

Table 3: A sample of actual prices, forecast prices and MAPE Values
Counter Actual (RM) Forecast (RM) MAPE (%)
HINGYAP 1.18 1.18 1.78
XIANLING 0.46 0.45 3.50
DUFU 0.56 0.56 3.53
GEFUNG 0.25 0.24 5.39
KOBAY 0.71 0.75 7.72
BGYEAR 0.75 0.71 9.61
SPK 0.36 0.34 9.84
FOCAL 0.20 0.24 9.31
FARLIM 0.38 0.32 5.87
SBCCORP 0.55 0.52 8.05
PATIMAS 0.08 0.09 3.75
EMICO 0.36 0.34 4.58
FARMBES 0.53 0.57 4.40
HWATAI 0.49 0.49 8.68
SINARIA 0.33 0.33 2.09
FBO 0.95 0.95 2.09
KBES 0.40 0.40 1.74
LFECORP 0.23 0.20 8.51
VASTALX 0.14 0.12 13.51
TOCEAN 0.95 0.96 1.65
ABRIC 0.18 0.17 8.77
CNASIA 0.51 0.49 2.74
KOMARK 0.28 0.26 6.43
YAHORNG 0.35 0.34 3.44

and actual price on 14th April 2010 and MAPE value for
two week investment of 24 counters as samples. It
shows that the MAPE values are lower than 10% and
most of the forecast prices are closest to actual prices
for the two week investment.
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The advantages of GBM are relatively easy
involvement of calculation and do not need a lot of data 
to forecast the future closing price. It has been stated in 
the Martingale and Markov properties of GBM.

CONCLUSION

This model is very suitable for the short-term
investment at least a maximum of two week
investment. This have been proven in Table 2 and 
illustrated in Fig. I. GBM gives a good opportunity to 
decide new and gain profit after two weeks of
investment. Moreover, GBM is the highly accurate
model, proven in Table 3, the most of MAPE value are
below than 10%. The calculation of GBM is much 
easier and less data is needed to forecast the future 
closing prices are compared with the other forecasting 
models. Although, GBM model has some weaknesses, 
but it proven that it gives the accurate value to the
actual prices. Therefore GBM is the best model used to 
forecast the future closing for at least a maximum of 
two week investment. 
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